If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4.3x+2.1=0
a = 1; b = -4.3; c = +2.1;
Δ = b2-4ac
Δ = -4.32-4·1·2.1
Δ = 10.09
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4.3)-\sqrt{10.09}}{2*1}=\frac{4.3-\sqrt{10.09}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4.3)+\sqrt{10.09}}{2*1}=\frac{4.3+\sqrt{10.09}}{2} $
| 3y^2-y=14 | | 2,25x^2-111x+840=0 | | 7-4x=70 | | 7+4x=70 | | X^2=3x+14 | | 3x+(×+6)=-24-2x | | 3p^2+7p=-6 | | V+6=-1+2v | | 24-1/2x=1/3x | | X^213x=10 | | 5x4+12=x−12 | | v+6=-1+2 | | 15z-23-5z=81÷9⋅3-30 | | (19x-3)/3=18 | | 7+6v=1+5v | | 7/8-1/3t=4/5 | | 6×6=4n | | 48=x+(4x-7) | | 1/2(4x-6=11 | | (3x+1)/(9x-2)=0 | | 0.75g=−12 | | 7/6-2/5t=6/7 | | 15z-23-5z=81/9•3-30 | | 2-(19+a)=3-11a | | -12x^2+1560x-43200=0 | | 3(x-5)+9x=-3 | | 3(x+5)^5=150 | | −6p=48 | | 3x^2=30x-9 | | 18-y=-11 | | X+40+x+80+x=180 | | 15z-23-5z=81/9*3-30 |